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Thomas A. Edwards** and Scou L. Lawrence*

NASA Ames Research Center, Moffett Field, California

Abstract

A three-dimensional parabolized Navier-Stokes
(PNS) code has been used to calculate the supersonic

overpressures from three different geometries at near- and
mid-flow fields. Wind-tunnel data is used for code valida-

tion. Comparison of the computed results with different
grid refinements is shown in this paper. It is observed that
a large number of grid points is needed to resolve the tail
shock/expansion fan interaction. Therefore, an adaptive

grid approach is employed to calculate the flow field. The
agreement between the numerical results and the wind-
tunnel data confirms that computational fluid dynamics

can be applied to the problem of sonic boom prediction.

Introduction

The sonic boom disturbance produced by current

commercial supersonic transports is too disruptive for rou-
tine overland flight. Since sonic booms are environmen-

tally objectionable, commercial supersonic flight over
land is currently banned throughout most of the world. It

is known that by redistributing the airplane lift distribu-
tion, the pressure pulse associated with the sonic boom
can be alleviated. 1 In order to design an appropriate air-

craft configuration, sonic boom prediction must be
accurate.

Different types of equations are needed for sonic
boom prediction in the near-, mid- and far-fields. This is
illustrated by the sketch in Figure 1. The near field
includes the flow relatively close to the body, normally
within a few characteristic lengths. In general, the detailed
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solution of the near-field flow equations is of interest in

determining the surface pressure distribution for the calcu-
lation of forces on the body. However, when complex

near-field solution techniques are employed to calculate
the flow further from the body, such as for predicting the
sonic boom, the numerical calculations become increas-

ingly inaccurate and time consuming, and often unstable.
The mid-field includes the flow from a few to perhaps a

hundred characteristic lengths. Here the flow is entirely

supersonic and can be considered inviscid. Shocks are
sufficiently weak that the flow can be considered
homentropic, however, the nonlinear behavior of the
compressions and expansions produced by particular fea-
tures of the body cannot be neglected. The far field is
defmedtobe the flow far from the body, typically beyond
several hundred to a thousand characteristic lengths. All
intermediate shocks have decayed or coalesced with either
the front or rear shock, and the overpressure signature has
evolved into the classical N-wave.

For more than two decades, many researchers have
studied the nature of sonic booms. 1,2,3 Wind-tunnel

experiments ranging from simple geometries to complex
aircraft configurations were conducted to determine the
validity of sonic-boom-prediction theory and to seek low-
boom configurations. 4'5 The basic sonic-boom theory
originated in a classic paper by G. B. Whitham in 1952. 6
Whitham's theory is a modification of linearized theory

that permits the coalescence of disturbances into shocks
for smooth bodies of revolution. Basic to its application is
the formulation of the F-function which is related to the

equivalent area distribution of the aircraft. For isentropic
axisymmetric flow, the pressure disturbances at large dis-
tances from the aircraft can be expressed in terms of the
F-function. An alternate formulation of the F-function that

was derived by Lighthill 7 for non-smooth bodies was
shown to be better for sonic-boom prediction for smooth

and non-smooth projectile shapes. Later, Walkden showed
that the Whitham theory could be applied to winged
bodies. 8

There are two main techniques for reducing sonic

boom: (1) aerodynamic minimization and (2) exotic con-
figurations. 9 The first technique uses a calculation of an
optimal flight altitude such that the N-wave is minimized.
The second uses a design of the aircraft so that the mid



field pressure disturbance, for example a finite-rise shock,

is retained on the ground before it turns into a noisy

N-wave. Recently, researchers have concentrated on the

second technique. The F-function theory is used as a

sonic-boom-prediction tool in the iterative loop of the
low-boom aircraft design 10 and wind-tunnel investiga-

tion.11 However, this linear theory fails in highly nonlin-

ear flow, such as the flow at angle of attack, at higher

Mach numbers (between 3 and 5), and flows involving
caustics.

The present study considers the application of com-

putational fluid dynamics (CFD) to the problem of sonic-
boom prediction, i.e., prediction of pressure disturbances

at a designated distance from the aircraft. A three-

dimensional parabolized Navier-Stokes (PNS) code is

applied to three sonic boom model problems. Calculated

pressure signatures are compared with wind-tunnel data.

An extrapolation method based on the F-function theory is

employed to obtain the far-field overpressure signal from
a near-field CFD solution.

Numerical Scheme

The PNS equations have been used for the efficient

prediction of three-dimensional, steady, supersonic, vis-

cous flow fields. The efficiency is achieved in both com-

puter time and memory requirement because the equations

can be solved using a space-marching technique rather

than time-relaxation. Furthermore, since the PNS equa-

tions are valid in both the inviscid and viscous regions of
the flow field, the interaction between these regions of the

flow field is automatically taken into account. Recent

design studies for high-speed civil transports have focused

on Mach 2 to 3.2 at cruise. 12 Since the design process is

iterative, a fast prediction method is needed, therefore, the

PNS approach is used in predicting the pressure
disturbances.

Nevertheless, there are certain limitations associated

with "parabolization" of the full Navier-Stokes equations.

The streamwise viscous terms are neglected. The inviscid

region of the flow must be supersonic and the streamwise

velocity component must be positive everywhere. The last

requirement excludes streamwise flow separation, but

crossflow separation is permitted.

The solution method used in this study integrates the

PNS equations using an implicit, approximately factored,

finite-volume algorithm in which the crossflow inviscid

fluxes are evaluated by Roe's flux-difference splitting
scheme. 13 The upwind algorithm is used to improve the
resolution of shock waves over that obtained with conven-

tional centr',d differencing schemes. The resulting com-

puter code has been successfully applied to a number of
hypersonic problems including flow past a circular cone 14

and turbulent flow past a generic all-body hypersonic
vehicle. 15

The application of the PNS code in this paper is

twofold. First, the near-field solution is obtained by apply-

ing the code to the flow immediately surrounding the

body. This solution can then be transferred to codes based

on F-function theory to extrapolate to the far field. Sec-

ond, exploratory calculations using the PNS code to per-

form the extrapolations are undertaken. Since the current

sonic boom extrapolation capabilities are generally lim-

ited to linear methods, which assume isentropic flow and

small disturbances, significant errors may occur at inter-

mediate distances, where nonlinear effects are still pre-

sent. Modification of the PNS code may be able to pro-

vide a propagation capability that incorporates all nonlin-
ear effects, can easily be extended to include atmospheric

gradients and turbulence, and has both two-dimensional

and three-dimensional extrapolation capabilities.

Whitham F-Function Theory

A currently accepted method of obtaining a pressure

signature from the F-function based on an area balancing

technique was first introduced by Whitham in 1952. This

extrapolation theory assumes isentropic axisymmetric
flow and small pressure disturbances. 16 The F-function

represents a distribution of sources which causes the same
disturbances as the aircraft at a given distance from the

aircraft, given by

y

f S"

F(y):,[ _d_
0

(1)

where S'" is the second derivative of equivalent area dis-

tribution and y = x-l_r0, 13= _-1. Here x is the

streamwise distance and r0 is the distance normal to the

body. For the case [Jro/Y - 1 the pressure and the charac-

teristic curve xl c can be expressed in terms of F-function

AP=w2F(y)/ 2._O (2)
Pc,,

xl c = y + firO- W_oF(Y) (3)

where _, = 1.4 for air and _: = (y+ I)M4/'_ 312. Note

that, without knowing S", the pressure signature at an

arbitrary distance r 1 can be obtained by providing an

overpressure signature at the near-field location r0. First,

obtain the F(y) from pressure measurements at r0



P_

y = xJc-I r0 +k.ff r(y)

and then define Yt as

Yt = x- fir1 : y- _iF(y)

where r1 > r0 is the desired distance. Since the pressure
signal propagates at the local speed of sound, and each

point of the signal advances according to its amplitude,

the signal is distorted and the F-function becomes multi-

valued as shown in Fig. 2. A new F-function at r 1 is

obtained by placing discontinuities (shocks) in such a way

that the equal-area rule is satisfied (see Fig. 2). This new

F-function gives the overpressure signature at r 1 by

AP = yM2 F (y)/ 2_I
P**

xl¢=yt+ 1

(4)

Sonic Boom Prediction

The overpressure predictions at 10 and 20 cone

lengths shown in Figs. 4a and 4b, respectively, confirm

the propagation capabilities of the code. All the numerical
solutions shown in this paper were shifted to align the

computational and experimental signatures at Ap/p,_ = 0

in the expansion region. The abscissa, Ax/L, is the shifted
distance divided by the characteristic length. Figure 4a
indicates the differences between the solutions obtained

using a fine grid and a coarse grid. The coarse grid con-
rains 140 points in the normal direction. Also, the effects

of the marching step size on the PNS solution are shown

in Fig. 5. The larger step size is 2% of the cone length.

The bow shock is correctly captured on the coarse grid,
but in order to resolve the tail shock/expansion fan inter-

action, more grid points are needed. This test case is a

good test for the marching code, since the small free-
stream Mach number and small cone angle result in very

weak shocks, and a weak expansion fan. The test was run

at constant total pressure and hence variable Reynolds

number due to changing total temperature. Overpressure
signals at 10 cone lengths with Re = 5 × 104 and Re =

1 × 106 are presented in Fig. 6. The calculations were

done by assuming an adiabatic body surface and a free-

stream temperature of 275°K. It is observed that including

viscosity does not produce significant differences from
the Euler calculation.

Three configurations, a cone-cylinder, a low-aspect-

ratio rectangular wing, and a delta-wing body, were stud-

ied. These were simple geometries for which wind-tunnel

data were available for comparison. All calculations were

done at zero angle of attack (ct = 0).

Cone-Cylinder

The cone-cylinder shown in Fig. 3 had a cone angle
of 6.48 °. In this test case the free-stream Mach number

was 1.68. The experimental overpressure signature was

measured at distances of 10 and 20 cone lengths (H/L =

10 and 20) from the cone where H/L is the height per

body length.

The calculation of the near-field solution for the half-

plane used a grid containing 21 grid lines in the circum-
ferential direction and 140 in the normal direction. In the

streamwise direction, the marching code took a step size

of about 1% of the cone length. The overpressure calcula-

tion at 10 and 20 cone lengths used the propagation capa-

bility of the PNS code. The near-field computation was

used as a starting solution for an axisymmetric calculation

on a grid containing two grid lines in the circumferential

direction and 340 in the normal (radial) direction. This

PNS extrapolation required 4 to 6 minutes of CPU time on

the Cray-YMP to obtain the pressure signature at 10 cone

lengths.

Low.Aspect-Ratio Wing

The second configuration considered was the low-

aspect-ratio wing shown in Fig. 7a. The free-stream Mach
number for the wind-tunnel test was 2.01. A sample com-

putational surface grid is shown in Fig. 7b. The quarter-

plane contains 90 points in the circumferential direction

and 140 in the radial direction. The overpressure signal

was obtained one chord length below the wing.

Figure 8 shows that both the viscous (dotted line) and
the inviscid (solid line) results agree well with the exper-

iment except that the location of the tail shock is slightly

downstream of the measured location most likely because

the sting of the wind-tunnel model was not accounted for

in the calculations. The thickness of the sting is almost

half the maximum wing thickness and it attaches at x/c =

0.933. Thus, in the experiment, the tail shock formed well

upstream of the trailing edge, whereas omitting the sting

in the computational model produced a shock attached to

the trailing edge of the wing. Also notice that the tail

shock for the viscous calculation is slightly downstream
of the inviscid shock location. Because the PNS assump-

tions eliminate upstream influence, the presence of a

boundary layer effectively delays the formation of a tail

shock at the wing trailing edge. Boundary layer displace-
ment also causes the bow shock to be slightly upstream of

the inviscid prediction.



Theinviscidcalculationof theoverpressureatone
bodylengthrequiredtwohoursof CPUtime.Becauseof
thestepsizerestrictionassociatedwiththeviscousgrid
clustering,theviscouscalculationrequiredeighthoursof
CPUtime.Subsequentgridresolutionstudieshaveindi-
catedthatacceptableresultscanbeobtainedonagrid
withhalfas many grid points in the circumferential direc-

tion, so that the CPU time can be halved.

The overpressure signals at one body length obtained
from the viscous and inviscid calculations were used as

input to a quasi-linear extrapolation code based on the

Whitham F-function theory. This extrapolation theory,
which assumes isentropic flow and small pressure distur-

bances, gives the overpressure signatures at eight body

lengths, as shown in Fig. 9. It is seen that the numerical

predictions agree well with the wind-tunnel data. The

axisymmetric PNS extrapolation to 8 body lengths, also

shown in Fig. 9, predicted the shock points and the peaks
correctly, although the gradient of the shock jump is

smeared. Inadequate grid resolution near the shock caused

excessive dissipation and smearing of the pressure

gradient.

Delta-Wing Body

The third configuration considered was the delta-
wing body shown in Fig. 10a. The free-stream Mach

number for the wind-tunnel test was 2.7. The computa-

tional grid contained 70 points in the circumferential

direction and 140 in the normal direction. Due to quadri-

lateral symmetry, the computational grid modeled the

quarter plane only. An example of the computational grid

is shown in Fig. 10b. The overpressure signal was

obtained at a distance of 3.1 body lengths. Viscous and

inviscid near-field solutions were obtained using the PNS

code for the region from the nose to approximately one

body length downstream of the trailing edge. The Euler

solution was computed with a step size of 0.06% to 0.18%

of the body length and required about 45 minutes of CPU
time. The viscous solution was obtained using a step size

of 0.018% of the body length and a computational grid

that contained 40 circumferential points. This calculation

required about 86 minutes of CPU time on the

Cray-YMP.

The Euler solution at the vertical plane of symmetry

was used as a starting solution for the axisymmetric PNS

extrapolation, with two lines in the circumferential direc-
tion and 400 in the radial direction, as was described for

the cone-cylinder case. This extrapolation process, using a

step size of 0.01, required about 40 minutes of CPU time

on the Cray-YMP to march 10 body lengths to obtain the

overpressure signature. This calculation defined all the

shock points correctly and captured the bow shock and the

wing shock, but the tail shock/expansion fan interaction

was poorly resolved because of a lack of grid points. A

series of numerical experiments, as indicated in Fig. 11,
showed that increasing the number of grid points

improved the prediction of the tail shock/expansion fan
interaction. The solutions did not match well downstream

from the tail-shock because the wind-tunnel model's sting
was not included in the calculations.

The number of grid points required in these calcula-

tions for accurate sonic boom prediction led to the consid-

eration of an adaptive grid. An adaptive grid has recently

been implemented in the PNS code with successful results
in two-dimensional and axisymmetric calculations. 17 In

the present application, adaptive gridding was utilized

only for the axisymmetric PNS extrapolation and, thus,

grids were only adapted in the radial direction.

Both the viscous and inviscid 3-D solutions at the sta-

tion one body length downstream of the Irailing edge have

been used as starting solutions for the PNS extrapolation

code. Numerical experiments showed that acceptable

results could be obtained from the adaptive grid procedure

with 340 radial grid points and a step size of 0.01. The
PNS extrapolations of the inviscid and viscous solutions

required approximately 60 and 80 minutes CPU time,

respectively. In Fig. 12 the inviscid solution indicates

slightly improved results using adaptive grids. Both the

viscous and inviscid solutions from the adaptive grid

agree fairly well with the wind-tunnel data and are shown

in Fig. 13. The differences between the viscous and
inviscid solutions are similar to those observed in the pre-

ceding case: the leading-edge shocks are displaced

upstream, and the trailing-edge shocks downstream, by a

viscous PNS calculation. The improved prediction of the

shock peaks by the viscous solution was primarily due to

the smaller spatial marching step size necessitated by the

fine grid. Numerical experiments have shown that an

inviscid calculation with a comparable step size yields

essentially the same result.

The overpressure signals at 1, 1.5, and 2 body lengths

obtained from the viscous PNS calculation followed by

the PNS extrapolation were used as inputs to the quasi-

linear extrapolation code. The results at 3.1 body lengths

are shown in Fig. 14. It is noted that an acceptable result

can be obtained by extrapolating the CFD solution from

as near as one body length. Thus, CFD can provide a

near-field flow solution for a quasi-linear extrapolation

code based on Whitham F-function theory.

Concluding Remarks

Accurate sonic boom prediction is needed in the

development of next-generation supersonic transports.

Existing theories based on linearized flow analysis cannot

provide sufficient accuracy. This study has demonstrated
that CFD can provide near-field flow solutions accurate

enough to be used for sonic boom prediction.



Furthermore,theseresultshaveshownthatCFDcanbe
usedto propagatethepressuredisturbancesto themid-
fieldandprovideaccurateanswers.ThusCFDcanbe
usedasatoolin theiterativeloopof thelow-boomair-
craftdesign.Whilethisis computationallyexpensive
comparedto the linearpropagationtechniques,the
approach is more versatile and may prove useful when
more detailed information is needed.

Including viscous effects for these cases had a negli-

gible effect on the far-field pressure signature. However,

the improved grid resolution required to obtained viscous

solutions demonstrated the sensitivity of the far-field sig-

nature to the shock and expansion resolution near the

body. To alleviate the computational expense of

extremely fine grids, a solution-adaptive grid procedure

was implemented which produced accurate solutions with

half as many grid points.
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